Biokinetic Models and Dose Coefficients for Internal Exposure

ICRP Symposium on Radiological Protection Dosimetry

University of Tokyo 18th February 2016

John Harrison and Francois Paquet* Public Health England, UK; * IRSN, France

0

- Publications providing internal dose coefficients
- Biokinetic models and developments
- New Publications and data
- Inhaled radon as a special case
- Scientific application of ICRP biokinetic models

ICRP Recommendations

Publication 26 ICRP 1977

Publication 60 ICRP 1991

Publication 103 ICRP 2007

ICRP dose coefficients, Sv/Bq

Committed equivalent and effective dose

- Inhalation or ingestion
- Workers and public
- Adults, children, fetus, breast-fed infant

Occupational exposures

Publication 30 (ICRP, 1979, 1980, 1981, 1988)

Dose coefficients relating to the 1977 Recommendations (Publication 26)

Publication 68 (ICRP, 1994)

Revised dose coefficients following 1990 Recommendations (Publication 60) with some revised models

Publications 54 and 78 (ICRP, 1988, 1997)

Bioassay data for interpretation of measurements

Public exposures

Publications 56, 67, 69, 71 and 72 (ICRP, 1989,

1993, 1995) Dose coefficients relating to the 1990 Recommendations (ICRP, 1991) for infants, 1,5, 10 and 15 year-old children and adults

Publication 88 and 95 (ICRP, 2001, 2004)

Dose coefficients for the embryo and fetus, and breastfed infant following intakes by the mother

Recent Publications

Publication 119 Compendium of Dose Coefficients based on ICRP Publication 60. Ann ICRP 41 (Supp1) 2012

Publication 128 Radiation Dose to Patients from Radiopharmaceuticals: A Compendium of Current Information Related to Frequently Used Substances. Ann ICRP 44 (2S) 2015

Biokinetic models

- Respiratory tract
- Alimentary tract
- Systemic models for each element / group
 - simple eg. tritium, caesium-137
 - complex eg. strontium-90, plutonium-239

Human Respiratory Tract Model

Publication 66 (ICRP 1994)

Particle transport model

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

Al Retention: new data

Human Alimentary Tract Model

Publication 30 (ICRP 1979)

Human Alimentary Tract Model

Publication 100 (ICRP 2001)

Systemic model for lodine

Figure 5-2. Structure of the biokinetic model for systemic iodine used in this report.

Systemic model for Plutonium

Plutonium-239 on bone surface

Biokinetic and Dosimetric models

Biokinetic models : Transformations in source organs / tissues

Dosimetric models : Energy deposition in and committed dose to *target* organs / tissues per transformation in source organs / tissues

Planned publications

Phantoms and radiations transport calculations

- Radiation Transport for Adult Phantoms (Adult SAFs)
- Pediatric Reference Computational Phantoms + SAFs
- Pregnant Female and Fetus Reference Computational Phantoms + SAFs

Internal dose coefficients

- Occupational Intakes of Radionuclides, Parts 1 5
- Internal Dose Coefficients for Members of the Public, Pts 1 & 2
- In utero Dose Coefficients for Maternal Intakes
- Breast-feeding Infant Dose Coefficients for Maternal Intakes
 External dose conversion coefficients
- External Dose Coefficients for Members of the Public Radiopharmaceutical dose coefficients Use of Effective Dose

Occupational Intakes of Radionuclides (OIR)

- OIR Part 1 Publication 130 (2015) Introduction
- OIR Part 2 H, C, P, S, Ca, Fe, Co, Zn, Sr, Y, Zr, Nb, Mo, Tc
- OIR Part 3 Ru, Sb, Te, I, Cs, Ba, Ir, Pb, Bi, Po, Rn, Ra, Th, U
- **OIR Part 4** Lanthanides and Actinides
- OIR Part 5 F, Na, Mg, K, Mg, Ni, Se, Mo, Tc, Ag

OIR dose coefficients for cobalt

Effective dose coefficients (Sv Bq⁻¹)

-	⁵⁷ Co	⁵⁸ Co	⁶⁰ Co
Inhaled particulate materials (5 μ m AMAD aerosols)			
Type F, cobalt nitrate, chloride	3.3E-10	1.4E-09	1.1E-08
Type M, all unspecified forms	1.0E-09	4.3E-09	2.7E-08
Type S, cobalt oxide, FAP, PSL	2.4E-09	6.6E-09	1.7E-07
Ingested materials			
$f_{\rm A}$ = 0.1, all chemical forms	2.4E-10	1.2E-09	7.6E-09
$f_{\rm A}$ = 0.05, insoluble oxides	1.7E-10	9.8E-10	4.8E-09

Bioassay data for ⁶⁰Co : inhalation of 1 Bq Type M

Dose conversion convention for inhaled radon-222 + progeny ICRP *Publication* 65 (1993)

Compare lung cancer risk in miners (LEAR)

2.83 x 10⁻⁴ per Working Level Month (WLM)

with total detriment from cancer and hereditary effects from Pub 60 (1991):

Workers 5.6×10^{-2} per Sv5 mSv per WLM

Public 7.3×10^{-2} per Sv**4 mSv per WLM**

Revised radon risk coefficient and Statement on Radon ICRP *Publication 115* (2010)

Revised nominal risk coefficient of 5 10⁻⁴ WLM⁻¹ to replace the Pub 65 value of 2.83 10⁻⁴ WLM⁻¹

Intention to publish dose coefficients for radon isotopes calculated using biokinetic and dosimetric models

Lowered Upper value of Reference Level for homes from 600 Bq m⁻³ to 300 Bq m⁻³

Epidemiological approach

USING 5 x 10⁻⁴ per WLM lung cancer risk

Workers	4.2 x 10 ⁻² Sv ⁻¹	12 mSv WLM ⁻¹
Public	5.7 x 10 ⁻² Sv ⁻¹	9 mSv WLM ⁻¹

Publication 65 values

Workers

Public

5 mSv WLM⁻¹ 4 mSv WLM⁻¹

ICRP Dose coefficients – preliminary values					
	Equilibrium factor	Unattached fraction, %	Effective dose mSv per WLM		
Home	0.4	10	14		
Indoor workplace	0.4 Iow	10 ver breathing rate	21 e 14		
Mine	0.2	1	12		

IGRP INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

OIR 3 dose coefficients for radon Inhalation or ingestion : Radon-222 (Radon) Effective dose Radon-220 (Thoron) Organ equivalent doses Radon-219 (Actinon)

BUT for inhaled Rn-222 – use 12 mSv per WLM in most circumstances

Information provided so that account can be taken of specific information on exposure conditions

- aerosol characteristics, equilibrium factor

Protection against radon exposures ICRP *Publication* 126 (2014)

Upper Reference Level of 300 Bq m⁻³ applying to all exposures in homes and workplaces

Exposure	Effective dose mSv / y
Home (≈7000h)	15.8
Work (≈ 2000h)	4.5
Total (8760h)	19.8

Plutonium production plants

Sellafield, Cumbria, UK

Mayak Nuclear Complex, Southern Urals, Russia

Mayak Pu production – early years

MAAK

Techa River

Calcium / strontium model for adults

Calcium / strontium model for adults

Calcium/Strontium transfer to the fetus

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

Summary points

ICRP biokinetic models being updated to make best use of current knowledge

Primary purpose is calculation of reference dose coefficients in support of the system of protection

Also used for scientific applications

www.icrp.org

